logo

Rozpoczyna się krążenie płucne

Ruch krwi przez naczynia jest regulowany przez czynniki neurohumoralne. Impulsy wysyłane wzdłuż zakończeń nerwowych mogą powodować zwężenie lub poszerzenie światła naczyń. Dwa rodzaje nerwów naczynioruchowych są odpowiednie dla mięśni gładkich ścian naczyniowych: rozszerzających naczynia i zwężających naczynia.

Impulsy wzdłuż tych włókien nerwowych występują w centrum naczynioruchowym rdzenia przedłużonego. W normalnym stanie ciała ściany tętnic są nieco napięte, a ich światło jest zwężone. Z centrum naczyniowo-motorycznego impulsy nieprzerwanie przepływają przez nerwy naczynioruchowe, które określają stały ton. Zakończenia nerwowe w ścianach naczyń krwionośnych reagują na zmiany ciśnienia krwi i skład chemiczny, powodując w nich podniecenie. To wzbudzenie przenika do centralnego układu nerwowego, co powoduje odruchową zmianę aktywności układu sercowo-naczyniowego. Zatem wzrost i spadek średnic naczyń krwionośnych następuje przez odruch, ale ten sam efekt może wystąpić pod wpływem czynników humoralnych - substancji chemicznych, które są we krwi i przybywają tu z pożywieniem iz różnych narządów wewnętrznych. Wśród nich są ważne środki rozszerzające naczynia i zwężające naczynia. Na przykład hormon przysadki - wazopresyna, hormon tarczycy - tyroksyna, hormon nadnerczy - adrenalina zwężają naczynia krwionośne, wzmacniają wszystkie funkcje serca, a histamina, która powstaje w ścianach przewodu pokarmowego iw każdym narządzie roboczym, działa odwrotnie: rozszerza naczynia włosowate bez działania na inne naczynia. Znaczący wpływ na pracę serca ma zmiana zawartości potasu i wapnia we krwi. Zwiększenie zawartości wapnia zwiększa częstotliwość i siłę skurczów, zwiększa pobudliwość i przewodność serca. Potas powoduje dokładnie odwrotny efekt.

Rozszerzanie i kurczenie się naczyń krwionośnych w różnych narządach znacząco wpływa na redystrybucję krwi w organizmie. Krew jest wysyłana do ciała roboczego, gdzie naczynia są rozszerzone, bardziej do niepracującego ciała - mniej. Narządami deponującymi są śledziona, wątroba i podskórna tkanka tłuszczowa.

Kręgi krążenia krwi u ludzi: ewolucja, struktura i praca dużych i małych, dodatkowych funkcji

W ludzkim ciele układ krążenia został zaprojektowany tak, aby w pełni zaspokoić jego wewnętrzne potrzeby. Ważną rolę w postępie krwi odgrywa obecność zamkniętego systemu, w którym przepływ krwi tętniczej i żylnej jest rozdzielony. Robi się to z obecnością kręgów krążenia krwi.

Tło historyczne

W przeszłości, kiedy naukowcy nie mieli pod ręką żadnych narzędzi informacyjnych, które byłyby w stanie badać procesy fizjologiczne w żywym organizmie, najwięksi naukowcy byli zmuszeni szukać cech anatomicznych zwłok. Naturalnie, serce zmarłego nie zmniejsza się, więc niektóre niuanse musiały być przemyślane same, a czasami po prostu fantazjują. Tak więc już w II wieku naszej ery Klaudiusz Galen, studiując na podstawie dzieł samego Hipokratesa, założył, że tętnice zawierają powietrze w swoim świetle zamiast krwi. Przez następne stulecia podejmowano wiele prób połączenia i połączenia dostępnych danych anatomicznych z punktu widzenia fizjologii. Wszyscy naukowcy wiedzieli i rozumieli, jak działa układ krążenia, ale jak to działa?

Naukowcy Miguel Servet i William Garvey w XVI wieku wnieśli ogromny wkład w usystematyzowanie danych dotyczących pracy serca. Harvey, naukowiec, który pierwszy opisał duże i małe kręgi krwi, określił obecność dwóch kół w 1616 r., Ale nie mógł wyjaśnić, w jaki sposób kanały tętnicze i żylne są ze sobą połączone. Dopiero później, w XVII wieku, Marcello Malpighi, jeden z pierwszych, który zaczął używać mikroskopu w swojej praktyce, odkrył i opisał obecność najmniejszego, niewidocznego za pomocą gołego oka kapilar, które służą jako ogniwo w kręgach krążenia krwi.

Filogeneza lub ewolucja krążenia krwi

Ze względu na to, że wraz z ewolucją zwierząt klasa kręgowców stała się bardziej postępowa anatomicznie i fizjologicznie, potrzebowali złożonego urządzenia i układu sercowo-naczyniowego. Tak więc, w celu szybszego przemieszczania się płynnego środowiska wewnętrznego w ciele zwierzęcia kręgowego, pojawiła się konieczność zamkniętego układu krążenia krwi. W porównaniu z innymi klasami królestwa zwierząt (na przykład ze stawonogami lub robakami), struny rozwijają podstawy zamkniętego układu naczyniowego. A jeśli na przykład lancet nie ma serca, ale istnieje aorta brzuszna i grzbietowa, to u ryb, płazów (płazów), gadów (gadów) występuje serce dwu- i trzykomorowe, a u ptaków i ssaków - serce czterokomorowe, które to skupienie w nim dwóch kręgów krążenia krwi, które nie mieszają się ze sobą.

Zatem obecność u ptaków, ssaków i ludzi, w szczególności dwóch oddzielonych kręgów krążenia krwi, jest niczym innym, jak ewolucją układu krążenia niezbędną do lepszego dostosowania do warunków środowiskowych.

Cechy anatomiczne kręgów krążących

Krążki krążenia krwi to zestaw naczyń krwionośnych, który jest zamkniętym systemem wejścia do wewnętrznych organów tlenu i składników odżywczych poprzez wymianę gazową i wymianę składników odżywczych, a także usuwanie dwutlenku węgla z komórek i innych produktów metabolicznych. Dwa kręgi są charakterystyczne dla ludzkiego ciała - systemowe lub duże, jak również płucne, zwane także małym okręgiem.

Wideo: Kręgi krążenia krwi, mini-wykład i animacja

Wielki krąg krążenia krwi

Główną funkcją dużego koła jest wymiana gazowa we wszystkich narządach wewnętrznych, z wyjątkiem płuc. Zaczyna się w jamie lewej komory; reprezentowane przez aortę i jej gałęzie, tętnicze złoże wątroby, nerek, mózgu, mięśni szkieletowych i innych narządów. Dalej, ten krąg kontynuuje sieć kapilarną i złoże żylne wymienionych organów; i przepływając żyłę główną do wnęki prawego przedsionka kończy się w końcu.

Tak więc, jak już wspomniano, początek dużego okręgu jest wnęką lewej komory. To tam przepływa krew tętnicza, zawierająca większość tlenu niż dwutlenek węgla. Strumień ten wchodzi do lewej komory bezpośrednio z układu krążenia płuc, czyli z małego koła. Przepływ tętniczy z lewej komory przez zastawkę aortalną jest wpychany do największego dużego naczynia, aorty. Aortę w przenośni można porównać z rodzajem drzewa, które ma wiele gałęzi, ponieważ opuszcza tętnice do organów wewnętrznych (do wątroby, nerek, przewodu pokarmowego, do mózgu - przez układ tętnic szyjnych, do mięśni szkieletowych, do tkanki podskórnej) włókno i inne). Tętnice narządów, które również mają wiele rozgałęzień i noszą odpowiednią nazwę anatomiczną, przenoszą tlen do każdego narządu.

W tkankach narządów wewnętrznych naczynia tętnicze dzielą się na naczynia o coraz mniejszej średnicy, w wyniku czego powstaje sieć kapilarna. Naczynia włosowate są najmniejszymi naczyniami, które praktycznie nie mają środkowej warstwy mięśniowej, a wyściółka wewnętrzna jest reprezentowana przez błonę wewnętrzną wyściełaną komórkami śródbłonka. Luki między tymi komórkami na poziomie mikroskopowym są tak duże w porównaniu z innymi naczyniami, że pozwalają białkom, gazom, a nawet uformowanym elementom swobodnie przenikać do płynu międzykomórkowego otaczających tkanek. Tak więc między kapilarą z krwią tętniczą a płynem pozakomórkowym w narządzie występuje intensywna wymiana gazowa i wymiana innych substancji. Tlen przenika z kapilary i dwutlenku węgla, jako produkt metabolizmu komórkowego, do kapilary. Przeprowadzany jest komórkowy etap oddychania.

Te żyłki są łączone w większe żyły i powstaje złoże żylne. Żyły, podobnie jak tętnice, noszą nazwy, w których są zlokalizowane (nerki, mózg itp.). Z dużych pni żylnych powstają dopływy żyły głównej górnej i dolnej, a te drugie wpadają do prawego przedsionka.

Cechy przepływu krwi w narządach wielkiego koła

Niektóre narządy wewnętrzne mają swoje własne cechy. Tak więc, na przykład, w wątrobie jest nie tylko żyła wątrobowa, „powiązana” z przepływem żylnym z niej, ale także żyła wrotna, która, przeciwnie, sprowadza krew do tkanki wątroby, gdzie krew jest oczyszczana, a następnie krew jest zbierana w napływach żył wątrobowych, aby uzyskać do dużego koła. Żyła wrotna sprowadza krew z żołądka i jelit, więc wszystko, co osoba zjadła lub wypiła, musi przejść rodzaj „czyszczenia” w wątrobie.

Oprócz wątroby, pewne niuanse występują w innych narządach, na przykład w tkankach przysadki mózgowej i nerek. Tak więc w przysadce mózgowej istnieje tak zwana „cudowna” sieć naczyń włosowatych, ponieważ tętnice, które doprowadzają krew do przysadki mózgowej z podwzgórza, są podzielone na naczynia włosowate, które następnie zbiera się w żyłach. Po zebraniu krwi z cząsteczkami hormonu uwalniającego ponownie żyły ponownie dzielą się na naczynia włosowate, a następnie tworzą się żyły, które przenoszą krew z przysadki mózgowej. W nerkach sieć tętnicza jest podzielona dwukrotnie na naczynia włosowate, co jest związane z procesami wydalania i reabsorpcji w komórkach nerkowych - w nefronach.

Układ krążenia

Jego funkcją jest realizacja procesów wymiany gazu w tkance płucnej w celu nasycenia „zużytej” krwi żylnej cząsteczkami tlenu. Zaczyna się w jamie prawej komory, gdzie przepływ krwi żylnej z bardzo małą ilością tlenu iz dużą zawartością dwutlenku węgla wchodzi z komory prawej-przedsionkowej (z „punktu końcowego” dużego koła). Ta krew przez zastawkę tętnicy płucnej przenosi się do jednego z dużych naczyń, zwanego pniem płucnym. Następnie przepływ żylny porusza się wzdłuż kanału tętniczego w tkance płucnej, która również rozpada się w sieć naczyń włosowatych. Przez analogię do naczyń włosowatych w innych tkankach zachodzi w nich wymiana gazu, tylko cząsteczki tlenu wchodzą do światła kapilary, a dwutlenek węgla przenika do pęcherzyków płucnych (komórek pęcherzykowych). Z każdym aktem oddychania powietrze ze środowiska wchodzi do pęcherzyków płucnych, z których tlen dostaje się do osocza krwi przez błony komórkowe. Z wydychanym powietrzem podczas wydechu, dwutlenek węgla wchodzący do pęcherzyków płucnych jest wydalany.

Po nasyceniu cząsteczkami O2 krew uzyskuje właściwości tętnicze, przepływa przez żyły i ostatecznie dociera do żył płucnych. Ten ostatni, składający się z czterech lub pięciu kawałków, otwiera się do wnęki lewego przedsionka. W rezultacie przepływ krwi żylnej przepływa przez prawą połowę serca, a przepływ tętniczy przez lewą połowę; i zwykle strumienie te nie powinny być mieszane.

Tkanka płuc ma podwójną sieć naczyń włosowatych. W pierwszym, procesy wymiany gazowej są przeprowadzane w celu wzbogacenia przepływu żylnego cząsteczkami tlenu (połączenie bezpośrednie z małym okręgiem), aw drugim, tkanka płucna jest zasilana tlenem i składnikami odżywczymi (połączenie z dużym okręgiem).

Dodatkowe kręgi krążenia krwi

Pojęcia te służą do przydzielania dopływu krwi do poszczególnych narządów. Na przykład, do serca, które najbardziej potrzebuje tlenu, dopływ tętniczy pochodzi z gałęzi aorty na samym początku, nazywanych prawą i lewą tętnicą wieńcową. Intensywna wymiana gazu zachodzi w naczyniach włosowatych mięśnia sercowego, a żylny odpływ występuje w żyłach wieńcowych. Te ostatnie są gromadzone w zatoce wieńcowej, która otwiera się do prawej komory przedsionkowej. W ten sposób jest serce lub krążenie wieńcowe.

krążenie wieńcowe w sercu

Krąg Willisa to zamknięta tętnicza sieć tętnic mózgowych. Koło mózgowe zapewnia dodatkowy dopływ krwi do mózgu, gdy mózgowy przepływ krwi jest zakłócany w innych tętnicach. Chroni to tak ważny organ przed brakiem tlenu lub niedotlenieniem. Krążenie mózgowe jest reprezentowane przez początkowy odcinek przedniej tętnicy mózgowej, początkowy odcinek tylnej tętnicy mózgowej, przednie i tylne tętnice łączące oraz wewnętrzne tętnice szyjne.

Krąg Willisa w mózgu (klasyczna wersja struktury)

Łożyskowe koło krążenia krwi działa tylko w ciąży płodu przez kobietę i pełni funkcję „oddychania” u dziecka. Łożysko powstaje, począwszy od 3-6 tygodni ciąży, i zaczyna funkcjonować w pełni od 12 tygodnia. Ze względu na to, że płuca płodu nie działają, tlen jest dostarczany do jego krwi poprzez przepływ krwi tętniczej do żyły pępowinowej dziecka.

krążenie krwi przed urodzeniem

Zatem cały ludzki układ krążenia można podzielić na oddzielne połączone ze sobą obszary, które wykonują swoje funkcje. Prawidłowe funkcjonowanie takich obszarów lub kręgów krążenia krwi jest kluczem do zdrowej pracy serca, naczyń krwionośnych i całego organizmu.

Duże i małe kółka krążenia krwi

Duże i małe kręgi krwi ludzkiej

Krążenie krwi to ruch krwi przez układ naczyniowy, zapewniający wymianę gazu między organizmem a środowiskiem zewnętrznym, wymianę substancji między narządami i tkankami oraz humoralną regulację różnych funkcji organizmu.

Układ krążenia obejmuje serce i naczynia krwionośne - aortę, tętnice, tętniczki, naczynia włosowate, żyły, żyły i naczynia limfatyczne. Krew porusza się przez naczynia z powodu skurczu mięśnia sercowego.

Obieg odbywa się w zamkniętym systemie składającym się z małych i dużych kół:

  • Duży krąg krążenia krwi dostarcza wszystkim narządom i tkankom krwi i składników odżywczych w niej zawartych.
  • Małe lub płucne krążenie krwi ma na celu wzbogacenie krwi w tlen.

Krążki krążenia krwi po raz pierwszy opisał angielski naukowiec William Garvey w 1628 r. W swojej pracy Anatomical Investigations on the Movement of the Heart and Vessels.

Krążenie płucne zaczyna się od prawej komory, z jej redukcją, krew żylna dostaje się do pnia płucnego i, przepływając przez płuca, oddaje dwutlenek węgla i jest nasycona tlenem. Wzbogacona w tlen krew z płuc wędruje przez żyły płucne do lewego przedsionka, gdzie kończy się mały okrąg.

Krążenie ogólnoustrojowe zaczyna się od lewej komory, która po zmniejszeniu jest wzbogacona w tlen, pompowana do aorty, tętnic, tętniczek i naczyń włosowatych wszystkich narządów i tkanek, a stamtąd przez żyły i żyły wpływa do prawego przedsionka, gdzie kończy się duży okrąg.

Największym naczyniem wielkiego koła krążenia krwi jest aorta, która rozciąga się od lewej komory serca. Aorta tworzy łuk, z którego rozgałęziają się tętnice, przenosząc krew do głowy (tętnic szyjnych) i do kończyn górnych (tętnic kręgowych). Aorta biegnie wzdłuż kręgosłupa, gdzie rozgałęziają się od niego, przenosząc krew do narządów jamy brzusznej, mięśni tułowia i kończyn dolnych.

Krew tętnicza, bogata w tlen, przechodzi przez całe ciało, dostarczając składniki odżywcze i tlen niezbędne do ich działania do komórek narządów i tkanek, aw układzie naczyń włosowatych zamienia się w krew żylną. Krew żylna nasycona dwutlenkiem węgla i produktami przemiany materii komórkowej wraca do serca iz niej dostaje się do płuc w celu wymiany gazowej. Największymi żyłami wielkiego koła krążenia krwi są górne i dolne puste żyły, które wpływają do prawego przedsionka.

Rys. Schemat małych i dużych kręgów krążenia krwi

Należy zauważyć, że układ krążenia w wątrobie i nerkach jest włączony do krążenia ogólnego. Cała krew z naczyń włosowatych i żył żołądka, jelit, trzustki i śledziony wchodzi do żyły wrotnej i przechodzi przez wątrobę. W wątrobie żyła wrotna rozgałęzia się w małe żyły i naczynia włosowate, które następnie ponownie łączą się ze wspólnym pniem żyły wątrobowej, która wpływa do żyły głównej dolnej. Cała krew narządów jamy brzusznej przed wejściem do krążenia układowego przepływa przez dwie sieci kapilarne: naczynia włosowate tych narządów i naczynia włosowate wątroby. System portalowy wątroby odgrywa dużą rolę. Zapewnia neutralizację toksycznych substancji, które powstają w jelicie grubym poprzez rozdzielanie aminokwasów w jelicie cienkim i są wchłaniane przez błonę śluzową jelita grubego do krwi. Wątroba, podobnie jak wszystkie inne narządy, otrzymuje krew tętniczą przez tętnicę wątrobową, która rozciąga się od tętnicy brzusznej.

Istnieją również dwie sieci naczyń włosowatych w nerkach: w każdym kłębuszku kłębuszkowym występuje sieć naczyń włosowatych, następnie te naczynia włosowate są połączone w naczyniu tętniczym, które ponownie rozpada się na naczynia włosowate, skręcając skręcone kanaliki.

Rys. Krążenie krwi

Cechą krążenia krwi w wątrobie i nerkach jest spowolnienie przepływu krwi z powodu funkcji tych narządów.

Tabela 1. Różnica w przepływie krwi w dużych i małych kręgach krążenia krwi

Przepływ krwi w organizmie

Wielki krąg krążenia krwi

Układ krążenia

W której części serca zaczyna się krąg?

W lewej komorze

W prawej komorze

W której części serca krąg się kończy?

W prawym atrium

W lewym atrium

Gdzie następuje wymiana gazu?

W naczyniach włosowatych znajdujących się w narządach klatki piersiowej i jamy brzusznej, mózgu, kończyn górnych i dolnych

W naczyniach włosowatych w pęcherzykach płucnych

Jaka krew przenika przez tętnice?

Jaka krew porusza się w żyłach?

Czas przesuwania krwi w kręgu

Dostarczanie narządów i tkanek z tlenem i przenoszenie dwutlenku węgla

Natlenienie krwi i usuwanie dwutlenku węgla z organizmu

Czas krążenia krwi to czas pojedynczego przejścia cząstki krwi przez duże i małe kółka układu naczyniowego. Więcej szczegółów w następnej części artykułu.

Wzory przepływu krwi przez naczynia

Podstawowe zasady hemodynamiki

Hemodynamika jest częścią fizjologii, która bada wzory i mechanizmy ruchu krwi przez naczynia ludzkiego ciała. Podczas jej studiowania używa się terminologii, a prawa hydrodynamiki, nauki o płynach, są brane pod uwagę.

Prędkość, z jaką krew się porusza, ale do naczyń zależy od dwóch czynników:

  • od różnicy ciśnienia krwi na początku i na końcu statku;
  • z oporu, który napotyka płyn na swojej drodze.

Różnica ciśnień przyczynia się do ruchu płynu: im większy, tym bardziej intensywny ruch. Opór w układzie naczyniowym, który zmniejsza szybkość ruchu krwi, zależy od wielu czynników:

  • długość statku i jego promień (im większa długość i mniejszy promień, tym większy opór);
  • lepkość krwi (jest to 5 razy lepkość wody);
  • tarcie cząstek krwi na ścianach naczyń krwionośnych i między nimi.

Parametry hemodynamiczne

Szybkość przepływu krwi w naczyniach jest wykonywana zgodnie z prawami hemodynamiki, podobnie jak prawa hydrodynamiki. Prędkość przepływu krwi charakteryzuje się trzema wskaźnikami: wolumetryczną prędkością przepływu krwi, liniową prędkością przepływu krwi i czasem krążenia krwi.

Objętość objętościowa przepływu krwi to ilość krwi przepływającej przez przekrój wszystkich naczyń danego kalibru na jednostkę czasu.

Prędkość liniowa przepływu krwi - prędkość ruchu pojedynczej cząstki krwi wzdłuż naczynia na jednostkę czasu. W środku naczynia prędkość liniowa jest maksymalna, a przy ścianie naczynia jest minimalna ze względu na zwiększone tarcie.

Czas krążenia krwi to czas, w którym krew przepływa przez duże i małe kółka krążenia krwi, zwykle wynosi 17-25 sekund. Około 1/5 wydaje się na przechodzenie przez mały okrąg, a 4/5 tego czasu przeznacza się na przejście przez duży.

Siłą napędową przepływu krwi w układzie naczyniowym każdego z kręgów krążenia krwi jest różnica ciśnienia krwi (PP) w początkowej części łożyska tętniczego (aorta dla wielkiego koła) i końcowa część łożyska żylnego (puste w środku żyły i prawe przedsionek). Różnica w ciśnieniu krwi (ΔP) na początku naczynia (P1) i na jego końcu (P2) jest siłą napędową przepływu krwi przez dowolne naczynie układu krążenia. Siła gradientu ciśnienia krwi jest wykorzystywana do przezwyciężenia oporu przepływu krwi (R) w układzie naczyniowym i w każdym pojedynczym naczyniu. Im wyższy gradient ciśnienia krwi w kręgu krążenia krwi lub w oddzielnym naczyniu, tym większa jest w nich objętość krwi.

Najważniejszym wskaźnikiem ruchu krwi przez naczynia jest wolumetryczna prędkość przepływu krwi lub objętościowy przepływ krwi (Q), dzięki któremu rozumiemy objętość krwi przepływającej przez całkowity przekrój łożyska naczyniowego lub przekrój pojedynczego naczynia na jednostkę czasu. Przepływ objętościowy krwi wyraża się w litrach na minutę (l / min) lub mililitrach na minutę (ml / min). Aby ocenić objętościowy przepływ krwi przez aortę lub całkowity przekrój dowolnego innego poziomu naczyń krwionośnych w krążeniu ogólnoustrojowym, stosuje się pojęcie objętościowego przepływu krwi układowej. Ponieważ na jednostkę czasu (minutę) cała objętość krwi wyrzucanej przez lewą komorę w tym czasie przepływa przez aortę i inne naczynia wielkiego koła krążenia krwi, termin malejąca objętość krwi (IOC) jest synonimem koncepcji ogólnoustrojowego przepływu krwi. MKOl osoby dorosłej w spoczynku wynosi 4–5 l / min.

W organizmie występuje również objętościowy przepływ krwi. W tym przypadku należy odnieść się do całkowitego przepływu krwi przepływającego na jednostkę czasu przez wszystkie tętnicze żylne lub wychodzące naczynia żylne ciała.

Tak więc objętościowy przepływ krwi Q = (P1 - P2) / R.

Ta formuła wyraża istotę podstawowego prawa hemodynamiki, które stwierdza, że ​​ilość krwi przepływającej przez całkowity przekrój układu naczyniowego lub pojedynczego naczynia na jednostkę czasu jest wprost proporcjonalna do różnicy ciśnienia krwi na początku i na końcu układu naczyniowego (lub naczynia) i odwrotnie proporcjonalna do aktualnej oporności krew.

Całkowity (ogólnoustrojowy) minutowy przepływ krwi w dużym okręgu oblicza się z uwzględnieniem średniego hydrodynamicznego ciśnienia krwi na początku aorty P1 i przy ujściu pustych żył P2. Ponieważ w tej części żył ciśnienie krwi jest bliskie 0, to wartość P, równa średniemu hydrodynamicznemu ciśnieniu tętniczemu na początku aorty, jest zastępowana wyrażeniem do obliczenia Q lub IOC: Q (IOC) = P / R.

Jedną z konsekwencji podstawowej zasady hemodynamiki - siły napędowej przepływu krwi w układzie naczyniowym - jest ciśnienie krwi wytworzone przez pracę serca. Potwierdzeniem decydującego znaczenia wartości ciśnienia krwi dla przepływu krwi jest pulsujący charakter przepływu krwi w całym cyklu sercowym. Podczas skurczu serca, gdy ciśnienie krwi osiąga maksymalny poziom, zwiększa się przepływ krwi, a podczas rozkurczu, gdy ciśnienie krwi jest minimalne, przepływ krwi jest osłabiony.

Gdy krew przemieszcza się przez naczynia od aorty do żył, ciśnienie krwi zmniejsza się, a szybkość jej spadku jest proporcjonalna do odporności na przepływ krwi w naczyniach. Szczególnie szybko zmniejsza ciśnienie w tętniczkach i naczyniach włosowatych, ponieważ mają one dużą odporność na przepływ krwi, o małym promieniu, dużej długości całkowitej i licznych gałęziach, tworząc dodatkową przeszkodę dla przepływu krwi.

Opór na przepływ krwi powstający w łożysku naczyniowym wielkiego koła krążenia krwi nazywa się ogólnym oporem obwodowym (OPS). Dlatego we wzorze do obliczania objętościowego przepływu krwi symbol R można zastąpić jego analogiem - OPS:

Q = P / OPS.

Z tego wyrażenia wynika wiele ważnych konsekwencji, które są niezbędne do zrozumienia procesów krążenia krwi w organizmie, oceny wyników pomiaru ciśnienia krwi i jego odchyleń. Czynniki wpływające na opór statku dla przepływu płynu są opisane w prawie Poiseuille, zgodnie z którym

gdzie R to opór; L jest długością statku; η - lepkość krwi; Π - liczba 3,14; r jest promieniem statku.

Z powyższego wyrażenia wynika, że ​​ponieważ liczby 8 i Π są stałe, L u dorosłego nie zmienia się zbytnio, wielkość obwodowego oporu przepływu krwi jest określana przez różne wartości promienia naczynia r i lepkości krwi η).

Wspomniano już, że promień naczyń typu mięśniowego może się gwałtownie zmieniać i ma znaczący wpływ na wielkość odporności na przepływ krwi (stąd ich nazwa to naczynia oporowe) oraz ilość przepływu krwi przez narządy i tkanki. Ponieważ opór zależy od wielkości promienia do czwartego stopnia, nawet niewielkie wahania promienia naczyń silnie wpływają na wartości odporności na przepływ krwi i przepływu krwi. Na przykład, jeśli promień statku zmniejszy się z 2 do 1 mm, jego opór wzrośnie o 16 razy, a przy stałym gradiencie ciśnienia przepływ krwi w tym naczyniu zmniejszy się również o 16 razy. Odwrotne zmiany oporu będą obserwowane wraz ze wzrostem promienia naczynia o 2 razy. Przy stałym średnim ciśnieniu hemodynamicznym przepływ krwi w jednym narządzie może wzrosnąć, w drugim - zmniejszyć, w zależności od skurczu lub rozluźnienia mięśni gładkich naczyń tętniczych i żył tego narządu.

Lepkość krwi zależy od zawartości we krwi liczby erytrocytów (hematokrytu), białka, lipoprotein osocza, a także stanu skupienia krwi. W normalnych warunkach lepkość krwi nie zmienia się tak szybko jak światło naczyń. Po utracie krwi z erytropenią, hipoproteinemią zmniejsza się lepkość krwi. Przy znacznej erytrocytozie, białaczce, zwiększonej agregacji erytrocytów i nadkrzepliwości lepkość krwi może znacznie wzrosnąć, co prowadzi do zwiększonej odporności na przepływ krwi, zwiększonego obciążenia mięśnia sercowego i może towarzyszyć upośledzony przepływ krwi w naczyniach mikrokrążenia.

W dobrze ustalonym trybie krążenia krwi objętość krwi wydalonej przez lewą komorę i przepływającej przez przekrój aorty jest równa objętości krwi przepływającej przez całkowity przekrój naczyń każdej innej części wielkiego koła krążenia krwi. Ta objętość krwi powraca do prawego przedsionka i wchodzi do prawej komory. Z niej krew jest wydalana do krążenia płucnego, a następnie przez żyły płucne wraca do lewego serca. Ponieważ IOC lewej i prawej komory są takie same, a duże i małe kółka krążenia krwi są połączone szeregowo, objętościowy przepływ krwi w układzie naczyniowym pozostaje taki sam.

Jednak podczas zmian warunków przepływu krwi, na przykład podczas przechodzenia z pozycji poziomej do pionowej, gdy grawitacja powoduje tymczasowe nagromadzenie krwi w żyłach dolnej części tułowia i nóg, przez krótki czas IOC lewej i prawej komory może się różnić. Wkrótce mechanizmy wewnątrzsercowe i pozakardiologiczne regulujące funkcjonowanie serca wyrównują objętości przepływu krwi przez małe i duże kręgi krążenia krwi.

Wraz z gwałtownym spadkiem żylnego powrotu krwi do serca, powodującym zmniejszenie objętości udaru, ciśnienie krwi we krwi może spaść. Jeśli jest znacznie zmniejszony, przepływ krwi do mózgu może się zmniejszyć. To tłumaczy uczucie zawrotów głowy, które może wystąpić w przypadku nagłego przejścia osoby z pozycji poziomej do pozycji pionowej.

Prędkość objętościowa i liniowa prądów krwi w naczyniach

Całkowita objętość krwi w układzie naczyniowym jest ważnym wskaźnikiem homeostazy. Średnia wartość dla kobiet wynosi 6-7%, dla mężczyzn 7-8% masy ciała i mieści się w granicach 4-6 litrów; 80-85% krwi z tej objętości znajduje się w naczyniach wielkiego koła krążenia krwi, około 10% znajduje się w naczyniach małego koła krążenia krwi, a około 7% znajduje się w jamach serca.

Większość krwi jest zawarta w żyłach (około 75%) - wskazuje to na ich rolę w odkładaniu się krwi zarówno w dużym, jak i małym kręgu krążenia krwi.

Ruch krwi w naczyniach charakteryzuje się nie tylko objętością, ale także liniową prędkością przepływu krwi. Pod tym pojęciem rozumie się odległość, jaką porusza się kawałek krwi na jednostkę czasu.

Między wolumetryczną i liniową prędkością przepływu krwi istnieje zależność opisana następującym wyrażeniem:

V = Q / Pr 2

gdzie V jest prędkością liniową przepływu krwi, mm / s, cm / s; Q - prędkość przepływu krwi; P - liczba równa 3,14; r jest promieniem statku. Wartość Pr 2 odzwierciedla pole przekroju poprzecznego naczynia.

Rys. 1. Zmiany ciśnienia krwi, liniowa prędkość przepływu krwi i pole przekroju poprzecznego w różnych częściach układu naczyniowego

Rys. 2. Charakterystyka hydrodynamiczna łożyska naczyniowego

Z wyrażenia zależności wielkości prędkości liniowej na wolumetrycznym układzie krążenia w naczyniach można zauważyć, że prędkość liniowa przepływu krwi (rys. 1) jest proporcjonalna do objętościowego przepływu krwi przez naczynie (-a) i odwrotnie proporcjonalna do pola powierzchni przekroju tego naczynia (-ów). Na przykład w aorcie, która ma najmniejsze pole przekroju poprzecznego w wielkim kole obiegowym (3-4 cm 2), prędkość liniowa ruchu krwi jest największa i wynosi około 20-30 cm / s. Podczas ćwiczeń może wzrosnąć 4-5 razy.

W kierunku naczyń włosowatych całkowity poprzeczny prześwit naczyń wzrasta, a w konsekwencji zmniejsza się liniowa prędkość przepływu krwi w tętnicach i tętniczkach. W naczyniach włosowatych, których całkowite pole przekroju poprzecznego jest większe niż w jakiejkolwiek innej części naczyń wielkiego koła (500-600 razy przekrój poprzeczny aorty), prędkość liniowa przepływu krwi staje się minimalna (mniejsza niż 1 mm / s). Powolny przepływ krwi w naczyniach włosowatych tworzy najlepsze warunki dla przepływu procesów metabolicznych między krwią a tkankami. W żyłach prędkość liniowa przepływu krwi wzrasta ze względu na zmniejszenie obszaru ich całkowitego przekroju w miarę zbliżania się do serca. Przy ujściu pustych żył wynosi 10-20 cm / s, a przy obciążeniach wzrasta do 50 cm / s.

Prędkość liniowa osocza i krwinek zależy nie tylko od typu naczynia, ale także od ich położenia w krwiobiegu. Przepływ krwi jest laminarny, w którym nuty krwi można podzielić na warstwy. Jednocześnie prędkość liniowa warstw krwi (głównie plazmy), w pobliżu lub w sąsiedztwie ściany naczynia, jest najmniejsza, a warstwy w środku przepływu są największe. Siły tarcia powstają między śródbłonkiem naczyniowym a warstwami blisko ściany krwi, tworząc naprężenia ścinające na śródbłonku naczyniowym. Naprężenia te odgrywają rolę w rozwoju czynników aktywnych naczyniowo przez śródbłonek, które regulują światło naczyń krwionośnych i prędkość przepływu krwi.

Czerwone krwinki w naczyniach (z wyjątkiem naczyń włosowatych) znajdują się głównie w centralnej części przepływu krwi i poruszają się w niej ze stosunkowo dużą prędkością. Przeciwnie, leukocyty są zlokalizowane głównie w warstwach przyściennych przepływu krwi i wykonują ruchy toczenia przy niskiej prędkości. To pozwala im wiązać się z receptorami adhezji w miejscach uszkodzenia mechanicznego lub zapalnego śródbłonka, przylegać do ściany naczynia i migrować do tkanki, aby pełnić funkcje ochronne.

Wraz ze znacznym wzrostem prędkości liniowej krwi w zwężonej części naczyń, w miejscach wyładowania ze zbiornika jej gałęzi, laminarny charakter ruchu krwi można zastąpić burzliwym. Jednocześnie w przepływie krwi ruch cząstek po warstwie może zostać zakłócony, między ścianą naczynia a krwią, mogą wystąpić duże siły tarcia i naprężenia ścinające niż podczas ruchu laminarnego. Rozwijają się wirowe przepływy krwi, zwiększa się prawdopodobieństwo uszkodzenia śródbłonka i odkładania się cholesterolu i innych substancji w błonie wewnętrznej ściany naczynia. Może to prowadzić do mechanicznego uszkodzenia struktury ściany naczyniowej i rozpoczęcia rozwoju skrzepów ciemieniowych.

Czas pełnego krążenia krwi, tj. powrót cząsteczki krwi do lewej komory po jej wyrzuceniu i przejściu przez duże i małe kółka krążenia krwi, powoduje 20-25 s na polu lub około 27 skurczów komór serca. Około jednej czwartej tego czasu przeznacza się na przepływ krwi przez naczynia małego koła i trzy czwarte - przez naczynia wielkiego koła krążenia krwi.

Krótkie i zrozumiałe o ludzkim krążeniu

Odżywianie tkanek tlenem, ważne pierwiastki, a także usuwanie dwutlenku węgla i produktów przemiany materii w organizmie z komórek jest funkcją krwi. Proces jest zamkniętą ścieżką naczyniową - koła krążenia krwi osoby, przez które przepływa nieprzerwany przepływ istotnego płynu, a jego sekwencja ruchu jest zapewniana przez specjalne zawory.

U ludzi istnieje kilka kręgów krążenia krwi

Ile rund krążenia krwi ma osoba?

Krążenie krwi lub hemodynamika osoby jest ciągłym przepływem płynu plazmowego przez naczynia ciała. Jest to zamknięta ścieżka typu zamkniętego, to znaczy nie styka się z czynnikami zewnętrznymi.

Hemodynamika ma:

  • główne kręgi - duże i małe;
  • dodatkowe pętle - łożyska, koronalne i willis.

Cykl cyklu jest zawsze pełny, co oznacza, że ​​nie ma mieszania krwi tętniczej i żylnej.

Do krążenia osocza spotyka się serce - główny organ hemodynamiki. Dzieli się na 2 połówki (prawą i lewą), w których znajdują się wewnętrzne sekcje - komory i przedsionki.

Serce jest głównym narządem w ludzkim układzie krążenia

Kierunek prądu tkanki łącznej ruchomej płynu jest określany przez zworki lub zawory serca. Kontrolują przepływ osocza z przedsionków (zastawek) i zapobiegają powrotowi krwi tętniczej z powrotem do komory (półksiężycowej).

Duże koło

Dwie funkcje są przypisane do dużego zakresu hemodynamiki:

  • nasycić całe ciało tlenem, rozprowadzić niezbędne elementy do tkanki;
  • usunąć dwutlenek gazu i substancje toksyczne.

Oto górna i pusta żyła główna, żyły, tętnice i artioli, a także największa tętnica - aorta, pochodzi z lewej strony serca komory.

Duży krąg krążenia krwi nasyca narządy tlenem i usuwa substancje toksyczne.

W rozległym pierścieniu przepływ płynu krwi zaczyna się w lewej komorze. Oczyszczone osocze przechodzi przez aortę i rozprzestrzenia się na wszystkie narządy poprzez ruch przez tętnice, tętniczki, docierając do najmniejszych naczyń - siatkę naczyń włosowatych, gdzie tlen i przydatne składniki są podawane do tkanek. Zamiast tego usuwa się niebezpieczne odpady i dwutlenek węgla. Droga powrotna plazmy do serca przebiega przez żyły, które płynnie wpływają do pustych żył - jest to krew żylna. Duża pętla pętli kończy się w prawym atrium. Czas trwania pełnego okręgu - 20-25 sekund.

Małe kółko (płuco)

Podstawową rolą pierścienia płucnego jest wymiana gazowa w pęcherzykach płucnych i wytworzenie wymiany ciepła. Podczas cyklu krew żylna jest nasycona tlenem, oczyszczonym z dwutlenku węgla. Jest mały okrąg i dodatkowe funkcje. Blokuje dalszy rozwój zatorów i zakrzepów krwi, które przeniknęły z dużego koła. A jeśli objętość krwi się zmienia, to gromadzi się w oddzielnych zbiornikach naczyniowych, które w normalnych warunkach nie uczestniczą w obiegu.

Krąg płuc ma następującą strukturę:

  • żyła płucna;
  • naczynia włosowate;
  • tętnica płucna;
  • tętniczki.

Krew żylna z powodu wyrzucenia z przedsionka prawej strony serca przechodzi do dużego pnia płucnego i wchodzi do centralnego organu małego pierścienia - płuc. W sieci kapilarnej zachodzi proces wzbogacania plazmy emisją tlenu i dwutlenku węgla. Krew tętnicza jest już wlewana do żył płucnych, a ostatecznym celem jest dotarcie do lewego regionu sercowego (atrium). W tym cyklu mały pierścień zamyka się.

Osobliwością małego pierścienia jest to, że ruch plazmy wzdłuż niego ma odwrotną kolejność. Tutaj krew bogata w dwutlenek węgla i odpady komórkowe przepływa przez tętnice, a natleniony płyn przemieszcza się przez żyły.

Dodatkowe kręgi

W oparciu o charakterystykę fizjologii człowieka, oprócz 2 głównych, istnieją 3 dodatkowe pomocnicze pierścienie hemodynamiczne - łożyska, serca lub korony i Willis.

Łożysko

Okres rozwoju w macicy płodu oznacza obecność krążenia krwi w zarodku. Jego głównym zadaniem jest nasycenie wszystkich tkanek ciała przyszłego dziecka tlenem i użytecznymi pierwiastkami. Płynna tkanka łączna wchodzi do układu narządów płodu przez łożysko matki przez sieć naczyń włosowatych żyły pępowinowej.

Kolejność ruchu jest następująca:

  • krew tętnicza matki, wchodząca do płodu, jest mieszana z jego krwią żylną z dolnej części ciała;
  • płyn przemieszcza się w kierunku prawego przedsionka przez żyłę główną dolną;
  • większa objętość osocza wnika do lewej połowy serca przez przegrodę międzyprzedsionkową (brakuje małego okręgu, ponieważ nie działa ono jeszcze na zarodku) i przechodzi do aorty;
  • pozostała ilość nieprzydzielonej krwi wpływa do prawej komory, gdzie górna żyła główna, zbierając całą krew żylną z głowy, wchodzi w prawą stronę serca, a stamtąd do pnia płuc i aorty;
  • z aorty krew rozprzestrzenia się na wszystkie tkanki zarodka.

Łożyskowe koło krążenia krwi nasyca narządy dziecka tlenem i niezbędnymi elementami.

Krąg serca

Ze względu na fakt, że serce stale pompuje krew, potrzebuje zwiększonego dopływu krwi. Dlatego integralną częścią wielkiego koła jest krąg wieńcowy. Zaczyna się od tętnic wieńcowych, które otaczają główny organ jako korona (stąd nazwa dodatkowego pierścienia).

Krąg serca odżywia narząd mięśniowy krwią.

Rolą koła sercowego jest zwiększenie dopływu krwi do pustego narządu mięśniowego. Osobliwością pierścienia wieńcowego jest to, że nerw błędny wpływa na skurcz naczyń wieńcowych, podczas gdy na kurczliwość innych tętnic i żył oddziałuje nerw współczulny.

Krąg Willisa

Za pełne dopływ krwi do mózgu odpowiada krąg Willisa. Celem takiej pętli jest kompensacja niedoboru krążenia krwi w przypadku zablokowania naczyń krwionośnych. w podobnej sytuacji zostanie użyta krew z innych pul tętniczych.

Struktura pierścienia tętniczego mózgu obejmuje tętnice, takie jak:

  • mózg przedni i tylny;
  • łącznik przedni i tylny.

Krąg krwi Willisa wypełnia krew krwią

Ludzki układ krążenia ma 5 okręgów, z których 2 są główne, a 3 dodatkowe, dzięki czemu ciało zaopatrywane jest w krew. Mały pierścień przeprowadza wymianę gazu, a duży pierścień jest odpowiedzialny za transport tlenu i składników odżywczych do wszystkich tkanek i komórek. Dodatkowe kręgi odgrywają ważną rolę w czasie ciąży, zmniejszają obciążenie serca i kompensują brak dopływu krwi w mózgu.

Oceń ten artykuł
(1 ocena, średnia 5,00 z 5)

Układ krążenia

Kręgi krążenia krwi - ta koncepcja jest warunkowa, ponieważ tylko u ryb krąg krążenia krwi jest całkowicie zamknięty. U wszystkich innych zwierząt koniec wielkiego koła krążenia krwi jest początkiem małego i odwrotnie, co uniemożliwia mówienie o ich całkowitej izolacji. W rzeczywistości oba koła krążenia krwi stanowią pojedynczy strumień krwi pełnej, w dwóch obszarach (w prawym i lewym sercu) energia kinetyczna jest zgłaszana we krwi.

Krąg krążenia krwi to ścieżka naczyniowa, która ma swój początek i koniec w sercu.

Treść

Duży (systemowy) obieg

Struktura

Rozpoczyna się od lewej komory, wrzucając krew do aorty podczas skurczu. Liczne tętnice opuszczają aortę, w wyniku czego przepływ krwi jest rozprowadzany do kilku równoległych regionalnych sieci naczyniowych, z których każda dostarcza oddzielny organ krwią. Dalszy podział tętnic występuje w tętniczkach i naczyniach włosowatych. Całkowita powierzchnia wszystkich naczyń włosowatych w ludzkim ciele wynosi około 1000 m².

Po przejściu narządu rozpoczyna się proces łączenia naczyń włosowatych w żyły, które z kolei gromadzą się w żyłach. Dwie wydrążone żyły zbliżają się do serca: górne i dolne żyły, które u zbiegu tworzą część prawego przedsionka serca, które jest końcem krążenia systemowego. Krążenie krwi w krążeniu ogólnoustrojowym następuje w ciągu 24 sekund.

Wyjątki struktury

  • Krążenie krwi w śledzionie i jelitach. Ogólna struktura nie obejmuje krążenia krwi w jelicie i śledzionie, ponieważ po utworzeniu żył śledzionowych i jelitowych łączą się, tworząc żyłę wrotną. Żyła wrotna ponownie rozpada się w wątrobie do sieci naczyń włosowatych, a dopiero potem krew płynie do serca.
  • Nerka z krążeniem krwi. W nerkach znajdują się również dwie sieci naczyń włosowatych - tętnice rozpadają się na kapsułki Shumlyansky-Bowmana, które wprowadzają tętniczki, z których każdy rozpada się na naczynia włosowate i jest zbierany do tętniczki wyrastającej. Trwały arteriole dociera do zwiniętej kanaliki nefronowej i ponownie rozpada się w sieć naczyń włosowatych.

Funkcje

Dopływ krwi do wszystkich organów ludzkiego ciała, w tym płuc.

Mały (płucny) krążenie

Struktura

Zaczyna się w prawej komorze, rzucając krew do pnia płucnego. Pień płucny jest podzielony na prawą i lewą tętnicę płucną. Dichotomiczne tętnice dzielą się na tętnice lobarne, segmentowe i subsegmentalne. Podsegmentowe tętnice dzielą się na tętniczki, rozpadając się na naczynia włosowate. Odpływ krwi przechodzi przez żyły, idąc w odwrotnej kolejności, która w ilości 4 sztuk spada do lewego przedsionka. Krążenie krwi w krążeniu płucnym następuje w ciągu 4 sekund.

Krążenie płucne zostało po raz pierwszy opisane przez Miguela Serveta w XVI wieku w książce Przywrócenie chrześcijaństwa.

Funkcje

  • Wymiana gazu
  • Przenoszenie ciepła

Funkcją małego okręgu nie jest odżywianie tkanki płucnej.

„Dodatkowe” kręgi krążenia krwi

W zależności od stanu fizjologicznego organizmu, a także praktycznej przydatności, czasami rozróżnia się dodatkowe kręgi krążenia krwi:

Krążenie łożyska

W macicy znajduje się płód.

Krew, która nie jest w pełni nasycona tlenem, przepływa przez żyłę pępowinową, która przechodzi przez pępowinę. Stąd większość krwi przepływa przez przewód żylny do dolnej żyły głównej, mieszając się z nie natlenioną krwią z dolnej części ciała. Mniejsza część krwi wchodzi do lewej gałęzi żyły wrotnej, przechodzi przez wątrobę i żyły wątrobowe i wchodzi do żyły głównej dolnej.

Mieszana krew przepływa przez żyłę główną dolną, której nasycenie tlenem wynosi około 60%. Prawie cała ta krew przepływa przez owalny otwór w ścianie prawego przedsionka do lewego przedsionka. Z lewej komory krew jest uwalniana do krążenia ogólnego.

Krew żyły głównej górnej wchodzi najpierw do prawej komory i pnia płucnego. Ponieważ płuca są w stanie zapadniętym, ciśnienie w tętnicach płucnych jest większe niż w aorcie i prawie cała krew przechodzi przez przewód tętniczy (Botall) do aorty. Przewód tętniczy wchodzi do aorty po wydostaniu się z niego tętnic głowy i kończyn górnych, co zapewnia im bardziej wzbogaconą krew. Płuca otrzymują bardzo małą część krwi, która następnie wchodzi do lewego przedsionka.

60%) z krążenia ogólnoustrojowego, przez dwie tętnice pępowinowe wchodzi do łożyska; reszta do organów dolnej części ciała.

Krążenie krążeniowe lub układ krążenia wieńcowego

Strukturalnie jest częścią krążenia ogólnoustrojowego, ale ze względu na znaczenie narządu i jego ukrwienie, czasami wspomina się o tym kręgu w literaturze.

Krew tętnicza do serca wchodzi w prawą i lewą tętnicę wieńcową. Zaczynają się od aorty nad półksiężycowymi zaworami. Od nich odchodzą mniejsze gałęzie, które wchodzą w ścianę mięśni rozgałęziającą się do naczyń włosowatych. Wypływ krwi żylnej występuje w 3 żyłach: dużych, średnich, małych, żyłach serca. Łącząc się tworzą zatokę wieńcową i otwierają się w prawy przedsionek.

Fundacja Wikimedia. 2010

Zobacz, co to jest „Mały krąg obiegu krwi” w innych słownikach:

krążenie płucne - podział (krążenie płucne) układu krążenia, począwszy od prawej komory serca i kończąc na naczyniach wpływających do lewego przedsionka; w małym kręgu krążenia następuje wymiana gazu między krwią naczyń włosowatych płuc i pęcherzyków...... Terminy medyczne

krążenie płucne - (circulus sanguinis minor) podział krwiobiegu, zaczynając od prawej komory serca i kończąc na naczyniach wpływających do lewego przedsionka... Duży słownik medyczny

Koła krążenia krwi. Duży, mały krąg krążenia krwi - Serce jest centralnym organem krążenia krwi. Jest to pusty organ mięśniowy składający się z dwóch połówek: lewej tętnicy i prawej żyły. Każda połowa składa się z połączonych przedsionków i komory serca....... Atlas ludzkiej anatomii

Koło Krążenia Krwi Duże (krążenie ogólnoustrojowe) - zestaw naczyń krwionośnych dostarczających krew do wszystkich części ciała, z wyjątkiem naczyń (krążenie płucne) płuc, w których odbywa się wymiana gazu. Wielki krąg krążenia krwi tworzy aorta i jej gałęzie, zgodnie z którymi...... terminy medyczne

KOŁO CYRKULACJI DUŻEJ - (krążenie ogólnoustrojowe) - zestaw naczyń krwionośnych dostarczających krew do wszystkich części ciała, z wyjątkiem naczyń (krążenie płucne) płuc, w których zachodzi wymiana gazowa. Wielki krąg krążenia krwi tworzy aorta i jej...... Objaśniający słownik medycyny

Mały okrąg - krążenie krwi - część układu naczyniowego; krew przemieszcza się z prawej komory przez tętnice płucne do płuc, gdzie przechodzi do naczyń włosowatych, a następnie do żył wpływających do lewego przedsionka serca, następuje wymiana gazowa między krwią a płucami...... Słownik pojęć na temat fizjologii zwierząt hodowlanych

Krążenie krążeniowe Małe (krążenie płucne) - układ naczyń krwionośnych, który zaczyna się w prawej komorze i jest wysyłany do płuc, gdzie następuje wymiana gazowa, i kończy się w lewym przedsionku (red.). Krew pozbawiona tlenu z prawej komory serca dostaje się do tętnicy płucnej... Terminy medyczne

KOŁO KRĄŻENIA MAŁEGO - (krążenie płucne) naczyń krwionośnych, które zaczyna się w prawej komorze i jest wysyłane do płuc, gdzie następuje wymiana gazu, i kończy się w lewym przedsionku (wyd.). Natleniona krew z prawej komory serca...... Objaśniający słownik medycyny

mały (płucny) krążenie (- circulus sanguinis minor) krąży krwią przez płuca, gdzie krew jest nasycona tlenem. Zaczyna się od prawej komory pniem płucnym i kończy się w lewym przedsionku czterema żyłami płucnymi... Słownik terminów i pojęć dotyczących anatomii człowieka

Wielki krąg krążenia krwi - koła krążenia krwi Ta koncepcja jest warunkowa, ponieważ tylko u ryb krąg krążenia krwi jest całkowicie zamknięty. U wszystkich innych zwierząt koniec wielkiego koła krążenia krwi jest początkiem małego i odwrotnie, co uniemożliwia rozmowę o ich kompletnym... Wikipedia

Koła krążenia krwi

Wzorzec ruchu krwi w kręgach krążenia krwi odkrył Harvey (1628). Następnie badanie fizjologii i anatomii naczyń krwionośnych wzbogaciło się o liczne dane, które ujawniły mechanizm ogólnego i regionalnego ukrwienia narządów.

U zwierząt i ludzi z czterokomorowymi sercami występują duże, małe i krążące krążki serca (ryc. 367). Centralnym elementem krążenia krwi jest serce.

367. Krążenie krążenia krwi (przez Kiss, Sentagotai).

1 - wspólna tętnica szyjna;
2 - łuk aorty;
3 - tętnica płucna;
4 - żyła płucna;
5 - lewa komora;
6 - prawa komora;
7 - pnia trzewnego;
8 - lepsza tętnica krezkowa;
9 - dolna tętnica krezkowa;
10 - żyła główna dolna;
11 - aorta;
12 - tętnica biodrowa wspólna;
13 - ogólna żyła jelitowa;
14 - żyła udowa. 15 - żyła wrotna;
16 - żyły wątrobowe;
17 - żyła podobojczykowa;
18 - żyła główna główna;
19 - żyła szyjna wewnętrzna.

Krążenie płucne (płucne)

Krew żylna z prawego przedsionka przez prawy otwór przedsionkowo-komorowy przechodzi do prawej komory, która poprzez kurczenie się wypycha krew do pnia płucnego. Dzieli się na prawą i lewą tętnicę płucną, przenikając do płuc. W tkance płucnej tętnice płucne są podzielone na naczynia włosowate otaczające każdy pęcherzyk. Po uwolnieniu dwutlenku węgla przez erytrocyty i wzbogaceniu ich w tlen, krew żylna staje się tętnicza. Krew tętnicza przez cztery żyły płucne (w każdym płucu dwie żyły) wpływa do lewego przedsionka, następnie przez lewy otwór przedsionkowo-komorowy przechodzi do lewej komory. Z lewej komory rozpoczyna się duży krąg krążenia krwi.

Wielki krąg krążenia krwi

Krew tętnicza z lewej komory podczas jej skurczu jest uwalniana do aorty. Aorta rozpada się na tętnice dostarczające krew do kończyn, tułowia. wszystkie narządy wewnętrzne i kończące się naczyniami włosowatymi. Składniki odżywcze, woda, sole i tlen pozostawiają krew naczyń włosowatych w tkance, produkty przemiany materii i dwutlenek węgla są ponownie wchłaniane. Kapilary zbiera się w żyłach, gdzie zaczyna się układ żylny naczyń, reprezentujący korzenie górnych i dolnych pustych żył. Krew żylna przechodzi przez te żyły do ​​prawego przedsionka, gdzie kończy się wielki krąg krążenia krwi.

Krążenie serca

Krążenie to rozpoczyna się od aorty za pomocą dwóch tętnic wieńcowych, przez które krew wpływa do wszystkich warstw i części serca, a następnie zbiera się przez małe żyły do ​​żylnej zatoki wieńcowej. To naczynie otwiera szerokie usta po prawej, atrium. Część małych żył ściany serca bezpośrednio otwiera się do wnęki prawego przedsionka i komory serca.